Inverse Filtering for Frequency Identification of Bridges Using Smartphones in Passing Vehicles: Fundamental Developments and Laboratory Verifications

Author:

Shirzad-Ghaleroudkhani NimaORCID,Gül MustafaORCID

Abstract

This paper puts forward a novel methodology of employing inverse filtering technique to extract bridge features from acceleration signals recorded on passing vehicles using smartphones. Since the vibration of a vehicle moving on a bridge will be affected by various features related to the vehicle, such as suspension and speed, this study focuses on filtering out these effects to extract bridge frequencies. Hence, an inverse filter is designed by employing the spectrum of vibration data of the vehicle when moving off the bridge to form a filter that will remove the car-related frequency content. Later, when the same car is moving on the bridge, this filter is applied to the spectrum of recorded data to suppress the car-related frequencies and amplify the bridge-related frequencies. The effectiveness of the proposed methodology is evaluated with experiments using a custom-built robot car as the vehicle moving over a lab-scale simply supported bridge. Nine combinations of speed and suspension stiffness of the car have been considered to investigate the robustness of the proposed methodology against car features. The results demonstrate that the inverse filtering method offers significant promise for identifying the fundamental frequency of the bridge. Since this approach considers each data source separately and designs a unique filter for each data collection device within each car, it is robust against device and car features.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3