The Effect of Tau and Taxol on Polymerization of MCF7 Microtubules In Vitro

Author:

Feizabadi Mitra Shojania,Castillon Venise Jan

Abstract

Overexpression of Tau protein in breast cancer cells is identified as an indicator for potential resistance to taxane-based therapy. As reported findings have been obtained mostly from clinical studies, the undetermined underlying mechanism of such drug resistance needs to be thoroughly explored through comprehensive in vitro evaluations. Tau and Taxol bind to the beta tubulin site in microtubules’ structure. This is of particular interest in breast cancer, as microtubules of these cancer cells are structurally distinct from some other microtubules, such as neuronal microtubules, due to their unique beta tubulin isotype distribution. The observed changes in the in vitro polymerization of breast cancer microtubules, and the different function of some molecular motors along them, leave open the possibility that the drug resistance mechanism can potentially be associated with different responses of these microtubules to Tau and Taxol. We carried out a series of parallel experiments to allow comparison of the in vitro dual effect of Tau and Taxol on the polymerization of MCF7 microtubules. We observed a concentration-dependent demotion-like alteration in the self-polymerization kinetics of Tau-induced MCF7 microtubules. In contrast, microtubules polymerized under the simultaneous effects of Tau and Taxol showed promoted assembly as compared with those observed in Tau-induced microtubules. The analysis of our data obtained from the length of MCF7 microtubules polymerized under the interaction with Tau and Taxol in vitro suggests that the phenomenon known as drug resistance in microtubule-targeted drugs such as Taxol may not be directly linked to the different responses of microtubules to the drug. The effect of the drug may be mitigated due to the simultaneous interactions with other microtubule-associated proteins such as Tau protein. The observed regulatory effect of Tau and Taxol on the polymerization of breast cancer microtubules in vitro points to additional evidence for the possible role of tubulin isotypes in microtubules’ functions.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3