Magnaporthe oryzae Transcription Factor MoBZIP3 Regulates Appressorium Turgor Pressure Formation during Pathogenesis

Author:

Liu Chengyu,Shen Ningning,Zhang Qian,Qin Minghui,Cao Tingyan,Zhu Shuai,Tang DingzhongORCID,Han LiboORCID

Abstract

The devastating fungus Magnaporthe oryzae (M. oryzae) forms a specialized infection structure known as appressorium, which generates enormous turgor, to penetrate the plant cells. However, how M. oryzae regulates the appressorium turgor formation, is not well understood. In this study, we identified MoBZIP3, a bZIP transcription factor that functioned in pathogenesis in M. oryzae. We found that the pathogenicity of the MoBZIP3 knockout strain (Δmobzip3) was significantly reduced, and the defect was restored after re-expression of MoBZIP3, indicating that MoBZIP3 is required for M. oryzae virulence. Further analysis showed that MoBZIP3 functions in utilization of glycogen and lipid droplets for generation of glycerol in appressorium. MoBZIP3 localized in the nucleus and could bind directly to the promoters of the glycerol synthesis-related genes, MoPTH2, MoTGL1 and MoPEX6, and regulate their expression which is critical for glycerol synthesis in the appressorium turgor pressure generation. Furthermore, the critical turgor sensor gene MoSln1 was also down regulated and its subcellular localization was aberrant in Δmobzip3, which leads to a disordered actin assembly in the Δmobzip3 appressorium. Taken together, these results revealed new regulatory functions of the bZIP transcription factor MoBZIP3, in regulating M. oryzae appressorium turgor formation and infection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3