Abstract
Regulation of microbial urease activity plays a crucial role in improving the utilization efficiency of urea and reducing nitrogen emissions to the environment for ruminant animals. Dealing with the diversity of microbial urease and identifying highly active urease as the target is the key for future regulation. However, the identification of active urease in the rumen is currently limited due to large numbers of uncultured microorganisms. In the present study, we describe an activity- and enrichment-based metaproteomic analysis as an approach for the discovery of highly active urease from the rumen microbiota of cattle. We conducted an optimization method of protein extraction and purification to obtain higher urease activity protein. Cryomilling was the best choice among the six applied protein extraction methods (ultrasonication, bead beating, cryomilling, high-pressure press, freeze-thawing, and protein extraction kit) for obtaining protein with high urease activity. The extracted protein by cryomilling was further enriched through gel filtration chromatography to obtain the fraction with the highest urease activity. Then, by using SDS-PAGE, the gel band including urease was excised and analyzed using LC-MS/MS, searching against a metagenome-derived protein database. Finally, we identified six microbial active ureases from 2225 rumen proteins, and the identified ureases were homologous to those of Fibrobacter and Treponema. Moreover, by comparing the 3D protein structures of the identified ureases and known ureases, we found that the residues in the β-turn of flap regions were nonconserved, which might be crucial in influencing the flexibility of flap regions and urease activity. In conclusion, the active urease from rumen microbes was identified by the approach of activity- and enrichment-based metaproteomics, which provides the target for designing a novel efficient urease inhibitor to regulate rumen microbial urease activity.
Funder
Scientific Research Project for Major Achievements of the Agricultural Science and Technology Innovation Program
State Key Laboratory of Animal Nutrition
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献