Abstract
Data association is a crucial component of multiple target tracking, in which each measurement obtained by the sensor can be determined whether it belongs to the target. However, many methods reported in the literature may not be able to ensure the accuracy and low computational complexity during the association process, especially in the presence of dense clutters. In this paper, a novel data association method based on reinforcement learning (RL), i.e., the so-called RL-JPDA method, has been proposed for solving the aforementioned problem. In the presented method, the RL is leveraged to acquire available information of measurements. In addition, the motion characteristics of the targets are utilized to ensure the accuracy of the association results. Experiments are performed to compare the proposed method with the global nearest neighbor data association method, the joint probabilistic data association method, the fuzzy optimal membership data association method and the intuitionistic fuzzy joint probabilistic data association method. The results show that the proposed method yields a shorter execution time compared to other methods. Furthermore, it can obtain an effective and feasible estimation in the environment with dense clutters.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献