Abstract
Hyperspectral imaging is capable of acquiring the rich spectral information of scenes and has great potential for understanding the characteristics of different materials in many applications ranging from remote sensing to medical imaging. However, due to hardware limitations, the existed hyper-/multi-spectral imaging devices usually cannot obtain high spatial resolution. This study aims to generate a high resolution hyperspectral image according to the available low resolution hyperspectral and high resolution RGB images. We propose a novel hyperspectral image superresolution method via non-negative sparse representation of reflectance spectra with a data guided sparsity constraint. The proposed method firstly learns the hyperspectral dictionary from the low resolution hyperspectral image and then transforms it into the RGB one with the camera response function, which is decided by the physical property of the RGB imaging camera. Given the RGB vector and the RGB dictionary, the sparse representation of each pixel in the high resolution image is calculated with the guidance of a sparsity map, which measures pixel material purity. The sparsity map is generated by analyzing the local content similarity of a focused pixel in the available high resolution RGB image and quantifying the spectral mixing degree motivated by the fact that the pixel spectrum of a pure material should have sparse representation of the spectral dictionary. Since the proposed method adaptively adjusts the sparsity in the spectral representation based on the local content of the available high resolution RGB image, it can produce more robust spectral representation for recovering the target high resolution hyperspectral image. Comprehensive experiments on two public hyperspectral datasets and three real remote sensing images validate that the proposed method achieves promising performances compared to the existing state-of-the-art methods.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献