Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy

Author:

Gakopoulos Sotirios,Nica Ioana Gabriela,Bekteshi SarandaORCID,Aerts Jean-MarieORCID,Monbaliu Elegast,Hallez Hans

Abstract

The use of data logging systems for capturing wheelchair and user behavior has increased rapidly over the past few years. Wheelchairs ensure more independent mobility and better quality of life for people with motor disabilities. Especially, for people with complex movement disorders, such as dyskinetic cerebral palsy (DCP) who lack the ability to walk or to handle objects, wheelchairs offer a means of integration into daily life. The mobility of DCP patients is based on a head-foot wheelchair steering system. In this work, a data logging system is proposed to capture data from human-wheelchair interaction for the head-foot steering system. Additionally, the data logger provides an interface to multiple Inertial Measurement Units (IMUs) placed on the body of the wheelchair user. The system provides accurate and real-time information from head-foot navigation system pressure sensors on the wheelchair during driving. This system was used as a tool to obtain further insights into wheelchair control and steering behavior of people diagnosed with DCP in comparison with a healthy subject.

Funder

Onderzoeksraad, KU Leuven

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Guidelines on the Provision of Manual Wheelchairs in Less-Resourced Settingshttp://www.who.int/disabilities/publications/technology/wheelchairguidelines/en

2. Data logger technologies for manual wheelchairs: A scoping review

3. Data Logger Technologies for Powered Wheelchairs: A Scoping Review

4. Cerebral palsy

5. Clinical presentation and management of dyskinetic cerebral palsy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3