A Visual Servoing Scheme for Autonomous Aquaculture Net Pens Inspection Using ROV

Author:

Akram WaseemORCID,Casavola Alessandro,Kapetanović NadirORCID,Miškovic Nikola

Abstract

Aquaculture net pens inspection and monitoring are important to ensure net stability and fish health in the fish farms. Remotely operated vehicles (ROVs) offer a low-cost and sophisticated solution for the regular inspection of the underwater fish net pens due to their ability of visual sensing and autonomy in a challenging and dynamic aquaculture environment. In this paper, we report the integration of an ROV with a visual servoing scheme for regular inspection and tracking of the net pens. We propose a vision-based positioning scheme that consists of an object detector, a pose generator, and a closed-loop controller. The system employs a modular approach that first utilizes two easily identifiable parallel ropes attached to the net for image processing through traditional computer vision methods. Second, the reference positions of the ROV relative to the net plane are extracted on the basis of a vision triangulation method. Third, a closed-loop control law is employed to instruct the vehicle to traverse from top to bottom along the net plane to inspect its status. The proposed vision-based scheme has been implemented and tested both through simulations and field experiments. The extensive experimental results have allowed the assessment of the performance of the scheme that resulted satisfactorily and can supplement the traditional aquaculture net pens inspection and tracking systems.

Funder

European Union through the European Regional Development Fund-The Competitiveness and Cohesion Operational Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3