Theoretical and Experimental Studies of Micro-Surface Crack Detections Based on BOTDA

Author:

Yuan Baolong,Ying YuORCID,Morgese MaurizioORCID,Ansari Farhad

Abstract

Micro-surface crack detection is important for the health monitoring of civil structures. The present literature review shows that micro-surface cracks can be detected by the Brillouin scattering process in optical fibers. However, the existing reports focus on experiment research. The comparison between theory and experiment for Brillouin-scattering-based optical sensors is rarely reported. In this paper, a distributed optical fiber sensor for monitoring micro-surface cracks is presented and demonstrated. In the simulation, by using finite element methods, an assemblage of a three-dimensional beam model for Brillouin optical time domain analysis (BOTDA) was built. The change in Brillouin frequency (distributed strain) as a function of different cracks was numerically investigated. Simulation results indicate that the amplitudes of the Brillouin peak increase from 27 με to 140 με when the crack opening displacement (COD) is enlarged from 0.002 mm to 0.009 mm. The experiment program was designed to evaluate the cracks in a beam with the length of 15 m. Experimental results indicate that it is possible to detect the COD in the length of 0.002~0.009 mm, which is consistent with the simulation data. The limitations of the proposed sensing method are discussed, and the future research direction is prospected.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3