A Fast and Lightweight Detection Network for Multi-Scale SAR Ship Detection under Complex Backgrounds

Author:

Yu Jimin,Zhou Guangyu,Zhou ShangboORCID,Qin Maowei

Abstract

It is very difficult to detect multi-scale synthetic aperture radar (SAR) ships, especially under complex backgrounds. Traditional constant false alarm rate methods are cumbersome in manual design and weak in migration capabilities. Based on deep learning, researchers have introduced methods that have shown good performance in order to get better detection results. However, the majority of these methods have a huge network structure and many parameters which greatly restrict the application and promotion. In this paper, a fast and lightweight detection network, namely FASC-Net, is proposed for multi-scale SAR ship detection under complex backgrounds. The proposed FASC-Net is mainly composed of ASIR-Block, Focus-Block, SPP-Block, and CAPE-Block. Specifically, without losing information, Focus-Block is placed at the forefront of FASC-Net for the first down-sampling of input SAR images at first. Then, ASIR-Block continues to down-sample the feature maps and use a small number of parameters for feature extraction. After that, the receptive field of the feature maps is increased by SPP-Block, and then CAPE-Block is used to perform feature fusion and predict targets of different scales on different feature maps. Based on this, a novel loss function is designed in the present paper in order to train the FASC-Net. The detection performance and generalization ability of FASC-Net have been demonstrated by a series of comparative experiments on the SSDD dataset, SAR-Ship-Dataset, and HRSID dataset, from which it is obvious that FASC-Net has outstanding detection performance on the three datasets and is superior to the existing excellent ship detection methods.

Funder

The Science and Technology Research Project of Higher Education of Hebei Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FESAR:Detection Model Based on Local Spatial Relationship Capture and Fused Convolution Enhancement;2023-11-15

2. ESD-Ship: An Fast and Accurate SAR Ship Detection Method;2023 2nd International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP);2023-10-27

3. A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar Imagery;IEEE Transactions on Geoscience and Remote Sensing;2023

4. A Survey on Deep-Learning-Based Real-Time SAR Ship Detection;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

5. Ship Contour Extraction From SAR Images Based on Faster R-CNN and Chan–Vese Model;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3