Deep Convolutional Neural Network for Rice Density Prescription Map at Ripening Stage Using Unmanned Aerial Vehicle-Based Remotely Sensed Images

Author:

Wei Lele,Luo Yusen,Xu Lizhang,Zhang Qian,Cai Qibing,Shen Mingjun

Abstract

In this paper, UAV (unmanned aerial vehicle, DJI Phantom4RTK) and YOLOv4 (You Only Look Once) target detection deep neural network methods were employed to collected mature rice images and detect rice ears to produce a rice density prescription map. The YOLOv4 model was used for rice ear quick detection of rice images captured by a UAV. The Kriging interpolation algorithm was used in ArcGIS to make rice density prescription maps. Mature rice images collected by a UAV were marked manually and used to build the training and testing datasets. The resolution of the images was 300 × 300 pixels. The batch size was 2, and the initial learning rate was 0.01, and the mean average precision (mAP) of the best trained model was 98.84%. Exceptionally, the network ability to detect rice in different health states was also studied with a mAP of 95.42% in the no infection rice images set, 98.84% in the mild infection rice images set, 94.35% in the moderate infection rice images set, and 93.36% in the severe infection rice images set. According to the severity of rice sheath blight, which can cause rice leaves to wither and turn yellow, the blighted grain percentage increased and the thousand-grain weight decreased, the rice images were divided into these four infection levels. The ability of the network model (R2 = 0.844) was compared with traditional image processing segmentation methods (R2 = 0.396) based on color and morphology features and machine learning image segmentation method (Support Vector Machine, SVM R2 = 0.0817, and K-means R2 = 0.1949) for rice ear counting. The results highlight that the CNN has excellent robustness, and can generate a wide range of rice density prescription maps.

Funder

National Ten Thousand Talents Plan Leading Talents

Six Talent Peaks Project in Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. Transforming Our World: The 2030 Agenda for Sustainable Development,2015

2. Advances in Transgenic Rice Biotechnology

3. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms

4. Water resources in the twenty-first century: Challenges and implications for action;Rosegrant,1997

5. Effect of weedy rice at different densities on photosynthetic characteristics and yield of cultivated rice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3