Automatic, Multiview, Coplanar Extraction for CityGML Building Model Texture Mapping

Author:

He HaiqingORCID,Yu Jing,Cheng Penggen,Wang YuqianORCID,Zhu Yufeng,Lin Taiqing,Dai Guoqiang

Abstract

Most 3D CityGML building models in street-view maps (e.g., Google, Baidu) lack texture information, which is generally used to reconstruct real-scene 3D models by photogrammetric techniques, such as unmanned aerial vehicle (UAV) mapping. However, due to its simplified building model and inaccurate location information, the commonly used photogrammetric method using a single data source cannot satisfy the requirement of texture mapping for the CityGML building model. Furthermore, a single data source usually suffers from several problems, such as object occlusion. We proposed a novel approach to achieve CityGML building model texture mapping by multiview coplanar extraction from UAV remotely sensed or terrestrial images to alleviate these problems. We utilized a deep convolutional neural network to filter out object occlusion (e.g., pedestrians, vehicles, and trees) and obtain building-texture distribution. Point-line-based features are extracted to characterize multiview coplanar textures in 2D space under the constraint of a homography matrix, and geometric topology is subsequently conducted to optimize the boundary of textures by using a strategy combining Hough-transform and iterative least-squares methods. Experimental results show that the proposed approach enables texture mapping for building façades to use 2D terrestrial images without the requirement of exterior orientation information; that is, different from the photogrammetric method, a collinear equation is not an essential part to capture texture information. In addition, the proposed approach can significantly eliminate blurred and distorted textures of building models, so it is suitable for automatic and rapid texture updates.

Funder

National Natural Science Foundation of China

Fuzhou Youth Science and Technology Leading Talent Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Recent progress in large-scale 3D city modeling;Shan;Acta Geod. Cartogr. Sin.,2019

2. OGC City Geography Markup Language (CityGML) Encoding Standard;Gröger,2012

3. Representing and Exchanging 3D City Models with CityGML;Kolbe,2009

4. CityGML 3.0: New Functions Open Up New Applications

5. Versioning of 3D City Models for Municipality Applications: Needs, Obstacles and Recommendations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3