Abstract
The magnitude of damage caused by hail depends on its size; however, direct observation or indirect estimation of hail size remains a significant challenge. One primary reason for estimations by proxy, such as through remote sensing methods, is that empirical relationships or statistical models established in one region may not apply to other areas. This study employs a machine learning method to build a hail size estimation model without assuming relations in advance. It uses FY-4A AGRI data to provide cloud-top information and ERA5 data to add vertical environment information. Before training the model, we conducted a principal component analysis (PCA) to analyze the highly influential factors on hail sizes. A total of 18 features, composed of four groups, namely brightness temperature (BT), the difference in BT (BTD), thermodynamics, and dynamics groups, were chosen from 29 original features. Dynamic and BTD features show superior performance in identifying large hail. Although the selected features are more closely correlated to hail sizes than unselected ones, the relationships are complicated and nonlinear. As a result, a two-layer regression back propagation neural network (BPNN) model with powerful fitting ability is trained with selected features to predict maximum hail diameter (MHD). The linear fitting R2 between predicted and observed MHDs is 0.52 on the test set, which signifies that our model performs well compared with other hail size estimation models. We also examine the model concerning all three hail cases in Shanghai, China, between 2019 and 2021. The model attained more satisfactory results than the radar-based maximum estimated hail size (MEHS) method, which overestimates the MHDs, thus further supporting the operational applications of our model.
Funder
National Natural Science Foundation of China
Shanghai Sailing Program
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献