Author:
Wang Xin,Shi Kebin,Shi Quan,Dong Hanwei,Chen Ming
Abstract
Tunnel water inrush is complex, fuzzy, and random, and it is affected by many factors, such as hydrology, geology, and construction. However, few papers have considered the impact of dynamic monitoring on water inrush in previous research. In this study, considering geological, hydrological, and construction factors, as well as dynamic monitoring, a new multi-index evaluation method is proposed to analyze the risk of tunnel water inrush based on the normal cloud model. A new weight algorithm combining analytic hierarchy process and entropy method is used to calculate the index weight. The certainty degree of each evaluation index belonging to the corresponding cloud can be obtained by the cloud model theory. The final level of tunnel water inrush is determined via the synthetic certainty degree. The proposed method is applied to analyze the risk of water inrush in the SS (Shuang-san) tunnel constructed by a tunnel boring machine in the arid area of Northwest China. The evaluation results are not only basically identical to the results calculated by the ideal point and gray relation projection methods, but also agree well with the actual excavation results. This demonstrates that this new risk assessment method of water inrush has high accuracy and feasibility. Simultaneously, it also provides a new research idea to analyze the probability of tunnel water inrush and can provide a reference for related projects.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献