Broadband Lumped-Element Parameter Extraction Method of Two-Port 3D MEMS In-Chip Solenoid Inductors Based on a Physics-Based Equivalent Circuit Model

Author:

Sun Jiamian,Li Haiwang,Wu Sifan,Xu Tiantong,Li Hanqing,Wu Hanxiao,Xia Shuangzhi

Abstract

Integrated 2D spiral inductors possess low inductance per unit area, which limits their application range. However, the state of investigation into the lumped-element parameter extraction method for integrated 3D in-chip multi-turn solenoid inductors, which possess higher inductance per unit area, is inadequate. This type of inductor can thus not be incorporated into fast computer-aided design (CAD)-assisted circuit design. In this study, we propose a broadband two-port physics-based equivalent circuit model for 3D microelectromechanical system (MEMS) in-chip solenoid inductors that are embedded in silicon substrates. The circuit model was composed of lumped elements with specific physical meanings and incorporated complicated parasitics resulting from eddy currents, skin effects, and proximity effects. Based on this model, we presented a lumped-element parameter extraction method using the electronic design automation software package, Agilent Advanced Design System (ADS). This method proved to be consistent with the results of two-port testing at low to self-resonant frequencies and could thus be used in CAD-assisted circuit design. The lumped element value variations were analyzed based on the physical meaning of the elements with respect to variations in structures and the substrate resistivity of inductors. This provided a novel perspective in terms of the design of integrated in-chip solenoid inductors.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3