An Alternative Approach to Detecting Cancer Cells by Multi-Directional Fluorescence Detection System Using Cost-Effective LED and Photodiode

Author:

Cho Kyoungrae,Seo Jeong-hyeok,Heo Gyeongyong,Choe Se-woonORCID

Abstract

The enumeration of cellular proliferation by covering from hemocytometer to flow cytometer is an important procedure in the study of cancer development. For example, hemocytometer has been popularly employed to perform manual cell counting. It is easily achieved at a low-cost, however, manual cell counting is labor-intensive and prone to error for a large number of cells. On the other hand, flow cytometer is a highly sophisticated instrument in biomedical and clinical research fields. It provides detailed physical parameters of fluorescently labeled single cells or micro-sized particles depending on the fluorescence characteristics of the target sample. Generally, optical setup to detect fluorescence uses a laser, dichroic filter, and photomultiplier tube as a light source, optical filter, and photodetector, respectively. These components are assembled to set up an instrument to measure the amount of scattering light from the target particle; however, these components are costly, bulky, and have limitations in selecting diverse fluorescence dyes. Moreover, they require multiple refined and expensive modules such as cooling or pumping systems. Thus, alternative cost-effective components have been intensively developed. In this study, a low-cost and miniaturized fluorescence detection system is proposed, i.e., costing less than 100 US dollars, which is customizable by a 3D printer and light source/filter/sensor operating at a specific wavelength using a light-emitting diode with a photodiode, which can be freely replaceable. The fluorescence detection system can quantify multi-directional scattering lights simultaneously from the fluorescently labeled cervical cancer cells. Linear regression was applied to the acquired fluorescence intensities, and excellent linear correlations (R2 > 0.9) were observed. In addition, the enumeration of the cells using hemocytometer to determine its performance accuracy was analyzed by Student’s t-test, and no statistically significant difference was found. Therefore, different cell concentrations are reversely calculated, and the system can provide a rapid and cost-effective alternative to commercial hemocytometer for live cell or microparticle counting.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

1. Hemocytometer counting;Absher,1973

2. Poisson statistics-mediated particle/cell counting in microwell arrays

3. Flow cytometry strikes gold

4. Flow cytometry: basic principles and applications

5. Magnetic Flow Cytometry for Point-of-Care Applicationshttps://cloudfront.escholarship.org/dist/prd/content/qt45b287bv/qt45b287bv.pdf?t=ony7gq

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3