Prolonged High-Fat Diet Consumption throughout Adulthood in Mice Induced Neurobehavioral Deterioration via Gut-Brain Axis

Author:

Wu Haicui,Zhang Wenxiu,Huang Mingyue,Lin Xueying,Chiou JiachiORCID

Abstract

Neuropsychiatric disorders have been one of the worldwide health problems contributing to profound social and economic consequences. It is reported that consumption of an excessive high-fat diet (HFD) in middle age could induce cognitive and emotional dysfunctions, whereas the mechanisms of the effects of long-term HFD intake on brain disorders have not been fully investigated. We propose a hypothesis that prolonged HFD intake throughout adulthood could lead to neurobehavioral deterioration via gut-brain axis. In this study, the adult C57BL/6J mice consuming long-term HFD (24 weeks) exhibited more anxiety-like, depression-like, and disruptive social behaviors and poorer performance in learning and memory than control mice fed with a normal diet (ND). In addition, the homeostasis of gut microbiota was impaired by long-term HFD consumption. Changes in some flora, such as Prevotellaceae_NK3B31_group and Ruminococcus, within the gut communities, were correlated to neurobehavioral alterations. Furthermore, the gut permeability was increased after prolonged HFD intake due to the decreased thickness of the mucus layer and reduced expression of tight junction proteins in the colon. The mRNA levels of genes related to synaptic-plasticity, neuronal development, microglia maturation, and activation in the hippocampus and prefrontal cortex of HFD-fed mice were lower than those in mice fed with ND. Interestingly, the transcripts of genes related to tight junction proteins, ZO-1 and Occludin involved in blood-brain-barrier (BBB), were decreased in both hippocampus and prefrontal cortex after long-term HFD consumption. Those results indicated that chronic consumption of HFD in mice resulted in gut microbiota dysbiosis, which induced decreased expression of mucus and tight junction proteins in the colon, in turn leading to local and systemic inflammation. Those changes could further contribute to the impairment of brain functions and neurobehavioral alterations, including mood, sociability, learning and memory. In short, long-term HFD intake throughout adulthood could induce behavioral phenotypes related to neuropsychiatric disorders via gut-brain axis. The observations of this study provide potential intervention strategies to reduce the risk of HFD via targeting the gut or manipulating gut microbiota.

Funder

Research Institute of Future Food

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3