Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method

Author:

Krishnamurthy Nandini K.1ORCID,Sabhahit Jayalakshmi N.1ORCID,Jadoun Vinay Kumar1ORCID,Gaonkar Dattatraya Narayan2,Shrivastava Ashish3ORCID,Rao Vidya S.4ORCID,Kudva Ganesh1ORCID

Affiliation:

1. Department of Electrical & Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

2. Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal 575025, Mangalore, India

3. Skill Faculty of Engineering and Technology, Shri Vishwakarma Skill University, Gurugram 122003, Haryana, India

4. Department of Instrumentation & Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

Abstract

In this work, a DC microgrid consists of a solar photovoltaic, wind power system and fuel cells as sources interlinked with the utility grid. The appropriate sizing and positioning of electric vehicle charging stations (EVCSs) and renewable energy sources (RESs) are concurrently determined to curtail the negative impact of their placement on the distribution network’s operational parameters. The charging station location problem is presented in a multi-objective context comprising voltage stability, reliability, the power loss (VRP) index and cost as objective functions. RES and EVCS location and capacity are chosen as the objective variables. The objective functions are tested on modified IEEE 33 and 123-bus radial distribution systems. The minimum value of cost obtained is USD 2.0250 × 106 for the proposed case. The minimum value of the VRP index is obtained by innovative scheme 6, i.e., 9.6985 and 17.34 on 33-bus and 123-bus test systems, respectively. The EVCSs on medium- and large-scale networks are optimally placed at bus numbers 2, 19, 20; 16, 43, and 107. There is a substantial rise in the voltage profile and a decline in the VRP index with RESs’ optimal placement at bus numbers 2, 18, 30; 60, 72, and 102. The location and size of an EVCS and RESs are optimized by the modified teaching-learning-based optimization (TLBO) technique, and the results show the effectiveness of RESs in reducing the VRP index using the proposed algorithm.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3