Evaluating the Degree of Tectonic Fracture Development in the Fourth Member of the Leikoupo Formation in Pengzhou, Western Sichuan, China

Author:

Xie Qiang1ORCID,Li Gao1,Yang Xu1,Peng Hongli2

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China

2. Petroleum Engineering Technology Research Institute, SINOPEC Southwest Oil & Gas Branch, Deyang 618000, China

Abstract

The extent of fracture development is associated with the degree of enrichment of a natural gas reservoir and its productivity. Based on numerical simulation results of the paleotectonic stress field, a set of evaluation methods for determining the degree of development of reservoir tectonic fractures were established using rock rupture criteria. Taking the fourth member of the Leikoupo Formation in the Pengzhou area of western Sichuan as an example, a finite element (FE) method was employed to simulate the paleo-tectonic stress field during the period of fracture development, and the degree of tectonic fracture development was further evaluated using the above methods. The results indicated that effective fractures were created in the Himalayan period. In this time, mainly NE–NEE and nearly E–W strike tectonic fractures were developed in the target layer. The fractures were mainly low-angle and oblique fractures, while the high-angle fractures were less developed. According to the integrative fracture index (F), five typical fracture development areas were determined: the fault zone, and the northern, eastern, southeastern, and central regions of the study area. The reliability of the fracture prediction results was verified using fracture distribution statistics and gas production test results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3