Nitrogen-Doped Porous Carbon Nanosheets Based on a Schiff Base Reaction for High-Performance Lithium-Ion Batteries Anode

Author:

Li Mai1,Cheng Zhi1,Sun Jingrui1,Tian Yu1,He Jiawei1,Chen Yutian1,Bai Yang1,Liu Zhiming1ORCID

Affiliation:

1. Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Abstract

Lithium-ion batteries (LIBs) have already gained significant attention because they have satisfactory energy density and no memory effect, making them one of the most widely used energy storage systems. In commercial LIBs, graphite is widely used as an anode material due to its excellent electrical conductivity and structural stability; however, as they are limited by their restricted theoretical capacity, there is an urgent need for the development of novel anode materials for LIBs. For this purpose, we designed a nitrogen-doped two-dimensional layered porous carbon material (2D-PNC) based on a covalent organic framework (COF) generated by a Schiff base reaction as a precursor. The characterization analysis results show that 2D-PNC is made of stacked two-dimensional ultra-thin carbon sheets with a porous structure. This unique structure is beneficial for electrolyte impregnation and lithium-ion storage, resulting in excellent electrochemical performance of 2D-PNC, which shows a high specific capacity of 573 mAh g−1 after 380 cycles at 0.5 A g−1. The results show that 2D-PNC provides the possibility of a practical application of high-performance lithium-ion batteries.

Funder

National Natural Science Foundation of China

Youth Innovation Team Project for Talent Introduction

Cultivation in Universities of Shandong Province

Taishan Scholar Project of Shandong Province of China, and the China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3