Abstract
Spatial and temporal precipitation data acquisition is highly important for hydro-meteorological applications. Gridded precipitation products (GPPs) offer an opportunity to estimate precipitation at different time and resolution. Though, the products have numerous discrepancies that need to be evaluated against in-situ records. The present study is the first of its kind to highlight the performance evaluation of gauge based (GB) and satellite based (SB) GPPs at annual, winter, and summer monsoon scale by using multiple statistical approach during the period of 1979–2017 and 2003–2017, respectively. The result revealed that the temporal magnitude of all the GPPs was different and deviate up to 100–200 mm with overall spatial pattern of underestimation (GB product) and overestimation (SB product) from north to south gradient. The degree of accuracy of GB products with observed precipitation decreases with the increase in the magnitude of precipitation and vice versa for SB precipitation products. Furthermore, the observed precipitation revealed the positive trend with multiple turning points during the period 1979–2005. However, the gentle increase with no obvious break point has been detected during the period of 2005–2017. The large inter-annual variability and trends slope of the reference data series were well captured by Global Precipitation Climatology Centre (GPCC) and Tropical Rainfall Measuring Mission (TRMM) products and outperformed the relative GPPs in terms of higher R2 values of ≥ 0.90 and lower values of estimated RME ≤ 25% at annual and summer monsoon season. However, Climate Research Unit (CRU) performed better during winter estimates as compared with in-situ records. In view of significant error and discrepancies, regional correction factors for each GPPs were introduced that can be useful for future concerned projects over the study region. The study highlights the importance of evaluation by the careful selection of potential GPPs for the future hydro-climate studies over the similar regions like Punjab Province.
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献