Effect of Initial Grain Size on Microstructure and Mechanical Properties of In Situ Hybrid Aluminium Nanocomposites Fabricated by Friction Stir Processing

Author:

Azimiroeen Ghasem1ORCID,Kashani-Bozorg Seyed Farshid2ORCID,Nosko Martin3,Lotfian Saeid4ORCID

Affiliation:

1. Centre of Engineering and Technical Skills Training, Isfahan University of Technology, Isfahan P.O. Box 84156-83111, Iran

2. Centre of Excellence for Surface Engineering and Corrosion Protection of Industries, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran P.O. Box 11155-4563, Iran

3. Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 13-11 Bratislava, Slovakia

4. Naval Architecture, Ocean and Marine Engineering Department, University of Strathclyde, Glasgow G1 1XQ, UK

Abstract

Friction stir processing (FSP) offers a unique opportunity to tailor the microstructure and improve the mechanical properties due to the combination of extensive strains, high temperatures, and high-strain rates inherent to the process. Reactive friction stir processing was carried out in order to produce in situ Al/(Al13Fe4 + Al2O3) hybrid nanocomposites on wrought/as-annealed (673 K) AA1050 substrate. The active mixture of pre-ball milled Fe2O3 + Al powder was introduced into the stir zone by pre-placing it on the substrate. Microstructural characterisation showed that the Al13Fe4 and Al2O3 formed as the reaction products in a matrix of the dynamically restored aluminium matrix. The aluminium matrix means grain size was found to decrease markedly to 3.4 and 2 μm from ~55 μm and 40–50 μm after FSP using wrought and as-annealed substrates employing electron backscattered diffraction detectors, respectively. In addition, tensile testing results were indicative that the fabricated surface nanocomposite on the as-annealed substrate offered a greater ultimate tensile strength (~160 MPa) and hardness (73 HV) than those (146 MPa, and 60 HV) of the nanocomposite formed on the wrought substrate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3