Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces

Author:

Rosales Antonio1ORCID,Heikkilä Tapio1

Affiliation:

1. VTT Technical Research Centre of Finland Ltd., P.O. Box 1100, FI-90571 Oulu, Finland

Abstract

Robots executing contact tasks are essential in a wide range of industrial processes such as polishing, welding, debugging, drilling, etc. Force control is indispensable in these type of tasks since it is required to keep the interaction force (between the robot and the environment/surface) within acceptable values. In this paper, we present a methodology to analyze and to design the force control system needed to regulate the force as close as possible to the desired value. The proposed methods are presented using a widely used generic contact task consisting of exerting a desired force on the normal direction to the surface while a desired velocity/position is tracked on the tangent direction to the surface. The analysis considers environments/surfaces with certain uneven characteristics, i.e., not perfectly flat. The uneven characteristic is studied using ramp or sinusoidal signals disturbing the position on the normal direction to the surface, and we present how the velocity on the tangent direction is related with the slope of the ramp or the frequency of the sinusoidal disturbance. Then, we provide a method to design the force controller that keeps the force error within desired limits and preserves stability, despite the uneven surface. Furthermore, considering the relation between the disturbance (ramp or sinusoidal) and the tangent velocity, we present a method to compute the maximum velocity for which the task can be executed. Simulations exemplifying and verifying the proposed methods are presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3