Building Energy Flexibility Assessment in Mediterranean Climatic Conditions: The Case of a Greek Office Building

Author:

Chantzis Georgios1,Giama Effrosyni1,Papadopoulos Agis M.1ORCID

Affiliation:

1. Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

The EU energy and climate policy has set quantitative goals for decarbonization based on the energy efficiency and the evolution of energy systems. The utilization of demand side flexibility can help towards this direction and achieve the target of higher levels of penetration in regard to intermittent renewable energy production and carbon emission reduction. This paper presents a simulation-based assessment of thermal flexibility in a typical office building in Greece, which is a representative Mediterranean country. The use of variable speed heat pumps coupled with hydronic terminal units was evaluated. The research focused mainly on the evaluation of energy flexibility offered by energy stored in the form of thermal energy by utilizing the building’s thermal mass. The demand response potential under hourly CO2eq intensity and energy prices was investigated. The flexibility potential was evaluated under different demand response strategies, and the effect of demand response on energy consumption, operational costs, CO2eq emissions and thermal comfort was analyzed and discussed. The results showed that both control strategies based on both the CO2eqintensity signal and spot price signal have, in some cases, the potential for cost and emission savings, and in other cases, the potential to depreciate in terms of emissions and cost the increase of energy consumption due to load shifting.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3