EDET: Entity Descriptor Encoder of Transformer for Multi-Modal Knowledge Graph in Scene Parsing

Author:

Ma Sai1ORCID,Wan Weibing1ORCID,Yu Zedong1,Zhao Yuming2

Affiliation:

1. Department of Computer, Shanghai University of Engineering Science, Shanghai 201620, China

2. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In scene parsing, the model is required to be able to process complex multi-modal data such as images and contexts in real scenes, and discover their implicit connections from objects existing in the scene. As a storage method that contains entity information and the relationship between entities, a knowledge graph can well express objects and the semantic relationship between objects in the scene. In this paper, a new multi-phase process was proposed to solve scene parsing tasks; first, a knowledge graph was used to align the multi-modal information and then the graph-based model generates results. We also designed an experiment of feature engineering’s validation for a deep-learning model to preliminarily verify the effectiveness of this method. Hence, we proposed a knowledge representation method named Entity Descriptor Encoder of Transformer (EDET), which uses both the entity itself and its internal attributes for knowledge representation. This method can be embedded into the transformer structure to solve multi-modal scene parsing tasks. EDET can aggregate the multi-modal attributes of entities, and the results in the scene graph generation and image captioning tasks prove that EDET has excellent performance in multi-modal fields. Finally, the proposed method was applied to the industrial scene, which confirmed the viability of our method.

Funder

Science and Technology Innovation 2030—Major Project of “New Generation Artificial Intelligence”

Jiangxi Provincial Department of Science and Technology, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3