Data-Driven and Knowledge-Guided Heterogeneous Graphs and Temporal Convolution Networks for Flood Forecasting

Author:

Shao Pingping12,Feng Jun12ORCID,Wu Yirui12,Wang Wenpeng13,Lu Jiamin12

Affiliation:

1. Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China

2. School of Computer and Information College, Hohai University, Nanjing 211100, China

3. College of Hydrology and Water Resources, Hohai University, Nanjing 211100, China

Abstract

Data-driven models have been successfully applied to flood prediction. However, the nonlinearity and uncertainty of the prediction process and the possible noise or outliers in the data set will lead to incorrect results. In addition, data-driven models are only trained from available datasets and do not involve scientific principles or laws during the model training process, which may lead to predictions that do not conform to physical laws. To this end, we propose a flood prediction method based on data-driven and knowledge-guided heterogeneous graphs and temporal convolutional networks (DK-HTAN). In the data preprocessing stage, a low-rank approximate decomposition algorithm based on a time tensor was designed to interpolate the input data. Adding an attention mechanism to the heterogeneous graph module is beneficial for introducing prior knowledge. A self-attention mechanism with temporal convolutional network was introduced to dynamically calculate spatiotemporal correlation characteristics of flood data. Finally, we propose physical mechanism constraints for flood processes, adjusted and optimized data-driven models, corrected predictions that did not conform to physical mechanisms, and quantified the uncertainty of predictions. The experimental results on the Qijiang River Basin dataset show that the model has good predictive performance in terms of interval prediction index (PI), RMSE, and MAPE.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3