A New Defect Diagnosis Method for Wire Rope Based on CNN-Transformer and Transfer Learning

Author:

Wang Mingyuan12,Li Jishun123,Xue Yujun123

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471000, China

2. Henan Key Laboratory of Mechanical Design and Transmission System, Henan University of Science and Technology, Luoyang 471000, China

3. National Key Laboratory of Intelligent Mining Heavy Equipment, CITIC Heavy Industries Co., Ltd., Luoyang 471039, China

Abstract

Accurate wire rope defect diagnosis is crucial for the health of whole machinery systems in various industries and practical applications. Although the loss of metallic cross-sectional area signals is the most widely used method in non-destructive wire rope evaluation methods, the weakness and scarcity of defect signals lead to poor diagnostic performance, especially in diverse conditions or those with noise interference. Thus, a new wire rope defect diagnosis method is proposed in this study. First, empirical mode decomposition and isolation forest methods are applied to eliminate noise signals and to locate the defects. Second, a convolution neural network and transformer encoder are used to design a new wire rope defect diagnosis network for the improvement of the feature extraction ability. Third, transfer learning architecture is established based on gray feature images to fine-tune the pre-trained model using a small target domain dataset. Finally, comparison experiments and a visualization analysis are conducted to verify the effectiveness of the proposed methods. The results demonstrate that the presented model can improve the performance of the wire rope defect diagnosis method under cross-domain conditions. Additionally, the transfer feasibility of transfer learning architecture is discussed for future practical applications.

Funder

National Basic Research Program of China

Special Project of Industrial Cluster in National Innovation Demonstration Zone

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3