Investigation on the Value-Added Production of Silicon Dioxide and Synthesizing Zeolites as well as Extraction of Rare Earth Elements from Fly Ash

Author:

Sun Zhe12,Li Heyu234,Tao Zuimiao12,Wang Baochuan5,Gao Lei6,Xu Yusheng6,Cao Yan12345

Affiliation:

1. Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China

2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

5. Huainan Dongchen Group Co., Ltd., Huainan 232038, China

6. Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China

Abstract

Coal fly ash is one of the most promising secondary sources for extracting high value-added rare earth elements. Nevertheless, the majority of rare earth elements in coal fly ash are associated with the aluminosilicate glassy phase, hindering their solubility during the acid leaching process and resulting in the traditional rare earth elements extraction method, which is unavoidably complex in operation and poor in the economy. In this study, prior to the conventional acid leaching, the realization of the coal fly ash activation was considered. This consisted of two steps involving the coal fly ash calcination at the elevated temperatures using recyclable Na2CO3 and the water and alkali washing. It helped in developing the pore structures in coal fly ash, facilitating the leaching solution to rare earth elements, and reducing the acid consumption of rare earth elements leaching. Simultaneously, the generated aqueous solutions could precipitate two new valuable products, the purified silica oxide powder (257.58 g·kg−1, 338.1 m2·g−1 BET, 40 nm grain size, 93.43% purity) and porous zeolites (410.3 g·kg−1). The residual rare earth elements in the pretreated solid residue can be easily extracted, with an extraction efficiency of 91.24% and an acid saving rate of 74.5%. Therefore, a multiple of value-added products can be obtained by this new extraction method with great economic significance.

Funder

National Natural Science Foundation of China

2023 Innovation-driven Development Special Foundation of Guangxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3