Clustering of LMS Use Strategies with Autoencoders

Author:

Verdú María J.1ORCID,Regueras Luisa M.1,de Castro Juan P.1ORCID,Verdú Elena2ORCID

Affiliation:

1. Higher Technical School of Telecommunications Engineering (ETSIT), Universidad de Valladolid, 47011 Valladolid, Spain

2. Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, 26006 Logroño, Spain

Abstract

Learning Management Systems provide teachers with many functionalities to offer materials to students, interact with them and manage their courses. Recognizing teachers’ instructing styles from their course designs would allow recommendations and best practices to be made. We propose a method that determines teaching style in an unsupervised way from the course structure and use patterns. We define a course classification approach based on deep learning and clustering. We first use an autoencoder to reduce the dimensionality of the input data, while extracting the most important characteristics; thus, we obtain a latent representation of the courses. We then apply clustering techniques to the latent data to group courses based on their use patterns. The results show that this technique improves the clustering performance while avoiding the manual data pre-processing work. Furthermore, the obtained model defines seven course typologies that are clearly related to different use patterns of Learning Management Systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3