An Improved CrowdDet Algorithm for Traffic Congestion Detection in Expressway Scenarios

Author:

Wang Chishe12,Chen Yuting1,Wang Jie2,Qian Jinjin1

Affiliation:

1. School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. Jinling Institute of Technology, Nanjing 210001, China

Abstract

Traffic congestion detection based on vehicle detection and tracking algorithms is one of the key technologies for intelligent transportation systems. However, in expressway surveillance scenarios, small vehicle size and vehicle occlusion present severe challenges for this method, including low vehicle detection accuracy and low traffic congestion detection accuracy. To address these challenges, this paper proposes an improved version of the CrowdDet algorithm by introducing the Involution operator and bi-directional feature pyramid network (BiFPN) module, which is called IBCDet. The proposed IBCDet module can achieve higher vehicle detection accuracy in expressway surveillance scenarios by enabling long-distance information interaction and multi-scale feature fusion. Additionally, a vehicle-tracking algorithm based on IBCDet is designed to calculate the running speed of vehicles, and it uses the average running speed to achieve traffic congestion detection according to the Chinese expressway level of serviceability (LoS) criteria. Adequate experiments are conducted on both the self-built Nanjing Raoyue expressway monitoring video dataset (NJRY) and the public dataset UA-DETRAC. The experimental results demonstrate that the proposed IBCDet outperforms the commonly used object detection algorithms in both vehicle detection accuracy and traffic congestion detection accuracy.

Funder

Ministry of Transport’s Industry Key Science and Technology Project

2021 Nanjing Municipal Industry and Information Technology Development Special Fund Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3