The Use of Construction Waste to Remediate a Thermally Active Spoil Heap

Author:

Pertile Eva1ORCID,Dvorský Tomáš1ORCID,Václavík Vojtěch1ORCID,Syrová Lucie1,Charvát Jakub1,Máčalová Kateřina1ORCID,Balcařík Lukáš1

Affiliation:

1. Department of Environmental Engineering, Faculty of Mining and Geology, VSB—Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic

Abstract

This article presents the results of experimental research on the possible use of construction and demolition waste (CDW) to improve the properties of unburnt tailings originating from the thermally active spoil heap in Heřmanice (Ostrava, Czech Republic). Mining activity anywhere in the world generally entails a lot of negative impacts on the environment, which are of a long-term nature. One of the most pressing challenges in the remediation of the consequences of mining activity is the thermal activity of spoil heaps associated with the high acidity of the tailings. Active acidity (pH/H2O), exchangeable acidity (pH/CaCl2), hydrolytic acidity (Ha), and elemental composition of tailings and CDW have been monitored. Based on an acidity study, it has been proven that compared to burnt tailings (pH/H2O = 8.4, pH/CaCl2 = 8.9 and Ha = 1.4 mmol kg−1), unburnt tailings show acidic properties (pH/H2O = 3.7, pH/CaCl2 = 3.6 and Ha = 205 mmol kg−1). The bioavailability of two selected potentially toxic elements (PTEs), namely Al and Fe, was examined based on the elemental composition. BCR sequential extraction analysis was used to determine their bioavailability. It has been proven that mixing CDW with tailings has a positive effect on the pH value, which has a positive effect on the further development of the entire site. The increase in the pH value is provably dependent on the amount of construction waste added, so it can be said that the increasing amount of construction waste will result in improved parameters of the burnt tailings. The results of the BCR analysis show that aluminum from the tailings will be released both from the reducible and oxidisable fractions, where it will be mainly bound to sulphides. The relatively high concentration of Fe in the oxidisable fraction (2002 mg Fe kg−1) suggests that Fe is bound to sulphides in the tailings, and it is due to the high residual pyrite and sulphide content in the dumped material, as expected. This work has found no limits where CDW no longer positively affects the acidity of unburnt tailings. For practical application, however, it is important that the mixture of CDW and tailings is properly mixed and then used for remediation.

Funder

VSB-TUO, Faculty of Mining and Geology

TERDUMP Cooperation VŠB-TUO/GIG Katowice

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ecotoxicity Assessment of Substrates from a Thermally Active Coal Tailing Dump Using Tests for Daphnia magna;The 4th International Conference on Advances in Environmental Engineering;2023-12-13

2. Effect of Ash from Biomass Combustion on Tailings pH;The 4th International Conference on Advances in Environmental Engineering;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3