Zero-Shot Image Classification with Rectified Embedding Vectors Using a Caption Generator

Author:

Hur Chan1,Park Hyeyoung1

Affiliation:

1. School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Although image recognition technologies are developing rapidly with deep learning, conventional recognition models trained by supervised learning with class labels do not work well when test inputs from untrained classes are given. For example, a recognizer trained to classify Asian bird species cannot recognize the species of kiwi, because the class label “kiwi” and its image samples have not been seen during training. To overcome this limitation, zero-shot classification has been studied recently, and the joint-embedding-based approach has been suggested as one of the promised solutions. In this approach, image features and text descriptions belonging to the same class are trained to be closely located in a common joint-embedding space. Once we obtain the embedding function that can represent the semantic relationship of image–text pairs in training data, test images and text descriptions (prototypes) of unseen classes can also be mapped to the joint-embedding space for classification. The main challenge with this approach is mapping inputs of two different modalities into a common space, and previous works suffer from the inconsistency between the distribution of two feature sets on joint-embedding space extracted from the heterogeneous inputs. To treat this problem, we propose a novel method of employing additional textual information to rectify the visual representation of input images. Since the conceptual information of test classes is generally given as texts, we expect that the additional descriptions from a caption generator can adjust the visual feature for better matching with the representation of the test classes. We also propose to use the generated textual descriptions to augment training samples for learning joint-embedding space. In the experiments on two benchmark datasets, the proposed method shows significant performance improvements of 1.4% on the CUB dataset and 5.5% on the flower dataset, in comparison to existing models.

Funder

Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Plannin

Institute of Information & communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3