Highway Crack Detection and Classification Using UAV Remote Sensing Images Based on CrackNet and CrackClassification

Author:

Zhao Yingxiang1ORCID,Zhou Lumei1ORCID,Wang Xiaoli1ORCID,Wang Fan1ORCID,Shi Gang1

Affiliation:

1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

Abstract

Cracks are a common type of road distress. However, the traditional manual and vehicle-borne methods of detecting road cracks are inefficient, with a high rate of missed inspections. The development of unmanned aerial vehicles (UAVs) and deep learning has led to their use in crack detection and classification becoming an increasingly popular topic. In this paper, an aerial drone is used to efficiently and safely collect road data. However, this also brings many challenges. For example, flying too high or too fast may produce poor quality images, with unclear cracks that may be ignored or misjudged as other features and increased environmental noise that may make it difficult to distinguish between cracks and other noise features. To address the above challenges, this paper proposes the CrackNet model and CrackClassification algorithm. The CrackNet network is an encoder–decoder architecture. Low- and high-level semantic information are combined through the skip feature fusion layers between the encoder and decoder to enhance the model’s expression and ability to recover image details. Additionally, the MHDC module at the bottom of the network can significantly increase the receptive field without reducing the feature map resolution. The MHSA module can simultaneously capture features from multiple subspaces. The average precision (AP) scores of the CrackNet network on three datasets, namely UAVRoadCrack, CRKWH100, and CrackLS315, were 0.665, 0.942, and 0.895, respectively. In addition, values of the other two evaluation metrics, ODS and OIS, were the highest among the compared methods. Meanwhile, the proposed CrackClassification algorithm in this paper achieves 85% classification accuracy for transverse and longitudinal cracks and 78% classification accuracy for block cracks and reticulated cracks. Overall, the CrackNet algorithm provides a new baseline model for crack detection in UAV remote sensing image scenes. The CrackClassification algorithm provides a new approach for batch classification of highway cracks. The detection and classification algorithm proposed in this paper were applied to 108 km of road sections.

Funder

Natural Science Foundation of China

Third Xinjiang Scientific Expediton Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3