In Situ Analysis of Curling Defects in Powder Bed Fusion of Polyamide by Simultaneous Application of Laser Profilometry and Thermal Imaging

Author:

Klamert Victor1ORCID,Schiefermair Lukas1,Bublin Mugdim2,Otto Andreas3ORCID

Affiliation:

1. High Tech Manufacturing, University of Applied Sciences Vienna, FH Campus Wien, Favoritenstrasse 226, 1100 Wien, Austria

2. Computer Science and Digital Communications, University of Applied Sciences Vienna, FH Campus Wien, Favoritenstrasse 226, 1100 Wien, Austria

3. Institute for Manufacturing and Photonic Technologies, Technische Universität Wien, Getreidemarkt 9, 1060 Wien, Austria

Abstract

Additive manufacturing (AM) is one of the key technologies in the global manufacturing market within various application sectors. The unique capabilities of AM enable high structural and part complexity, low material waste, and benefits in productivity by reducing design cycles and time to market. Efficient real-time quality control is still an important challenge in AM. In this paper, a real-time and in situ approach for monitoring the process in powder bed fusion of polyamide (PBF-LB/P/PA12) is proposed using the simultaneous application of two individual sensors, enabling the overlay and direct comparison of independent output data. An industrial grade laser profilometer and a thermal infrared (IR) camera were successfully integrated into a commercial system for PBF-LB/P. Artificially created curling defects were induced in a reproducible way by the manipulation of process parameters. The radiometric data was evaluated and processed into 3D topology and profile measurements to highlight peaks and curling progression. The results measured using different powder bed conditions were contrasted with corresponding thermographic data to prove the thermal visibility of curling and the influence of inhomogeneous temperature distribution on geometrical powder surface defects. The experimental setup enables the measuring of the entire powder bed surface inside the machine, with no limitations to sub-areas. Results indicate the measurable presence of curling and related temperature influences. When curling reached maximum values, inverted warpage into the negative z-direction was detected at part center as a further effect. These results can be used for improving real-time quality control in AM.

Funder

cooperative doctoral program “Digiphot” between FH Campus Wien and TU Wien

City of Vienna

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3