Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random Forest Feature Selection and Multi-Layer Perceptron

Author:

Wang Hairui1,Li Dongwen1,Li Dongjun1,Liu Cuiqin1,Yang Xiuqi2,Zhu Guifu3

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

2. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650504, China

3. Information Technology Construction Management Center, Kunming University of Science and Technology, Kunming 650504, China

Abstract

The accurate prediction of the remaining useful life (RUL) of aircraft engines is crucial for improving engine safety and reducing maintenance costs. To tackle the complex issues of nonlinearity, high dimensionality, and difficult-to-model degradation processes in aircraft engine monitoring parameters, a new method for predicting the RUL of aircraft engines based on the random forest algorithm and a Bayes-optimized multilayer perceptron (MLP) was proposed here. First, the random forest algorithm was used to evaluate the importance of historical monitoring parameters of the engine, selecting the key features that significantly impact the engine’s lifetime operation cycle. Then, the single exponent smoothing (SES) algorithm was introduced for smoothing the extracted features to reduce the interference of original noise. Next, an MLP-based RUL prediction model was established using a neural network. The Bayes’ online parameter updating formula was used to solve the objective function and return the optimal parameters of the MLP training model and the minimum value of the evaluation index RMSE. Finally, the probability density function of the predicted RUL value of the aircraft engine was calculated to obtain the RUL prediction results.The effectiveness of the proposed method was verified and analyzed using the C-MAPSS dataset for turbofan engines. Experimental results show that, compared with several other methods, the RMSE of the proposed method in the FD001 test set decreases by 6.1%, demonstrating that the method can effectively improve the accuracy of RUL prediction for aircraft engines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3