Combined Bidirectional Long Short-Term Memory with Mel-Frequency Cepstral Coefficients Using Autoencoder for Speaker Recognition

Author:

Chen Young-Long1ORCID,Wang Neng-Chung2ORCID,Ciou Jing-Fong1,Lin Rui-Qi1

Affiliation:

1. Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung 404336, Taiwan

2. Department of Computer Science and Information Engineering, National United University, Miaoli 360302, Taiwan

Abstract

Recently, neural network technology has shown remarkable progress in speech recognition, including word classification, emotion recognition, and identity recognition. This paper introduces three novel speaker recognition methods to improve accuracy. The first method, called long short-term memory with mel-frequency cepstral coefficients for triplet loss (LSTM-MFCC-TL), utilizes MFCC as input features for the LSTM model and incorporates triplet loss and cluster training for effective training. The second method, bidirectional long short-term memory with mel-frequency cepstral coefficients for triplet loss (BLSTM-MFCC-TL), enhances speaker recognition accuracy by employing a bidirectional LSTM model. The third method, bidirectional long short-term memory with mel-frequency cepstral coefficients and autoencoder features for triplet loss (BLSTM-MFCCAE-TL), utilizes an autoencoder to extract additional AE features, which are then concatenated with MFCC and fed into the BLSTM model. The results showed that the performance of the BLSTM model was superior to the LSTM model, and the method of adding AE features achieved the best learning effect. Moreover, the proposed methods exhibit faster computation times compared to the reference GMM-HMM model. Therefore, utilizing pre-trained autoencoders for speaker encoding and obtaining AE features can significantly enhance the learning performance of speaker recognition. Additionally, it also offers faster computation time compared to traditional methods.

Funder

National Science and Technology Council (NSTC) of the Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3