Sample-Pair Envelope Diamond Autoencoder Ensemble Algorithm for Chronic Disease Recognition

Author:

Zhang Yi123,Ma Jie4,Qin Xiaolin12,Li Yongming4ORCID,Zhang Zuwei3

Affiliation:

1. Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Academy of Chips Technology, China Electronics Technology Group, Chongqing 401332, China

4. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

Abstract

Chronic diseases are severe and life-threatening, and their accurate early diagnosis is difficult. Machine-learning-based processes of data collected from the human body using wearable sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor systems to obtain high-quality and large amounts of data to meet the demands of diagnostic accuracy. Furthermore, existing feature-learning methods do not deal with this problem well. To address the above issues, a sample-pair envelope diamond autoencoder ensemble algorithm (SP_DFsaeLA) is proposed. The proposed algorithm has four main components. Firstly, sample-pair envelope manifold neighborhood concatenation mechanism (SP_EMNCM) is designed to find pairs of samples that are close to each other in a manifold neighborhood. Secondly, the feature-embedding stacked sparse autoencoder (FESSAE) is designed to extend features. Thirdly, a staged feature reduction mechanism is designed to reduce redundancy in the extended features. Fourthly, the sample-pair-based model and single-sample-based model are combined by weighted fusion. The proposed algorithm was experimentally validated on nine datasets and compared with the latest algorithm. The experimental results show that the algorithm is significantly better than existing representative algorithms and it achieves the highest improvement of 22.77%, 21.03%, 24.5%, 27.89%, and 10.65% on five criteria over the state-of-the-art methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3