Information Extraction from Industrial Sensor Data Using Time Series Meta-Features

Author:

Grabowski Niclas1ORCID,Kremser Ron2,Düssel Roman3,Mulder Albert4,Tutsch Dietmar1ORCID

Affiliation:

1. Institute for Automation/Computer Science, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany

2. WSW Wuppertaler Stadtwerke GmbH, Bromberger Str. 39-41, 42281 Wuppertal, Germany

3. TRIMET Aluminium SE, Aluminiumallee 1, 45356 Essen, Germany

4. Alcoa Nederland Holding B.V., Weena 798, 3014 DA Rotterdam, The Netherlands

Abstract

In the smart manufacturing sector, analyzing time series data is essential for monitoring plants and machinery to prevent costly failures or shutdowns. In order to gain new insights and make better control decisions, new methods are needed for extracting information and interpreting sensor data from hundreds of systems. In this paper, we present an approach for visualizing and interpreting sensor data from TRIMET Aluminium SE Essen (TAE) using time series meta-features and principal component analysis (PCA). We describe our general approach of generating multiple two-dimensional feature spaces to identify salient and implausible sensor data. Using a set of 20 time series meta-features, we applied our approach to sensor data from TAE which were generated by thermocouples. Each step of the approach was integrated into a dashboard to ensure a user-friendly and approachable interaction in finding salient and implausible sensor data.

Funder

European Union and the European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Aluminium process fault detection by Multiway Principal Component Analysis;Majid;Control Eng. Pract.,2011

2. Kremser, R., Grabowski, N., Düssel, R., Kessel, K., and Tutsch, D. (2018, January 2–7). Investigation of Different Measurement Techniques for Individual Anode Currents in Hall-Héroult Cells. Proceedings of the 12th Australasian Aluminium Smelting Technology Conference, Queenstown, New Zealand.

3. Pursche, T., Grabowski, N., Nowitzki, J., Claub, R., Patryarcha, L., Dreisbach, H., and Tibken, B. (2018, January 11–14). Identification of Overtemperature Disturbances in Industrial Food Refrigeration Processes. Proceedings of the 2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Nara, Japan.

4. Fulcher, B.D. (2018). Feature Engineering for Machine Learning and Data Analytics, CRC Press/Taylor & Francis Group.

5. Characteristic-Based Clustering for Time Series Data;Wang;Data Min. Knowl. Discov.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3