Detecting and Evaluating Displacements of Paving Blocks Adjacent to Deep Excavation Sites Using Terrestrial Photogrammetry

Author:

Kim Taesik1ORCID,Choi Ho2,Jung Jinman3ORCID,Min Hong4ORCID,Jung Young-Hoon5ORCID

Affiliation:

1. Department of Civil Engineering, Hongik University, Seoul 04066, Republic of Korea

2. Department of Urban Infrastructure Research, Seoul Institute of Technology, Seoul 03909, Republic of Korea

3. Department of Computer Engineering, Inha University, Incheon 22212, Republic of Korea

4. School of Computing, Gachon University, Seongnam 13120, Republic of Korea

5. Department of Civil Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea

Abstract

In urban areas, deep excavation-induced ground deformations may damage adjacent existing structures and are conventionally evaluated by levelling at installed settlement points. However, a small number of measurements cannot represent the total changes in ground deformations adjacent to excavation sites. Furthermore, significant local subsidences may occur in places where settlement points have not been installed and only noticed after an accident. For deep excavation sites located in urban areas, paved pedestrian sidewalks are often located adjacent to sites, and construction activities can cause these paving blocks to become displaced. This study introduces a method to detect paving block displacements adjacent to deep excavation sites using terrestrial photogrammetry. A digital camera creating point cloud data (PCD) and an acquisition method satisfying the frontal and side overlap requirements were demonstrated. To investigate the displacement detections and measurement capabilities by PCD analysis, an experimental program was conducted, including a PCD comparison containing the uplift, settlement, and horizontal paving block displacement and reference data. The cloud-to-cloud distance computation algorithm was adopted for PCD comparisons. Paving block displacements were detected for displacements of 5, 7.5, and 10 mm in the uplift, settlement, and horizontal directions; however, the horizontal displacements were less clear. PCD analysis enabled satisfactory measurements between 0.024 and 0.881 mm for the vertical-displacement cases, but significant errors were observed for the horizontal-displacement cases owing to the cloud-comparison algorithm. The measurement blind spot of limited settlement points was overcome by the proposed method that detected and measured paving block displacements adjacent to excavation sites.

Funder

Ministry of Land, Infrastructure and Transport of the Korea government

National Research Foundation of Korea

Inha University Research Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3