The Effect of Multifactor Interaction on the Quality of Human–Machine Co-Driving Vehicle Take-Over

Author:

Han Yaxi1ORCID,Wang Tao1,Shi Dong1,Ye Xiaofei2ORCID,Yuan Quan3ORCID

Affiliation:

1. Guangxi Key Laboratory of Intelligent Transportation System, Guilin University of Electronic Technology, Guilin 541004, China

2. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

3. State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

Abstract

This paper investigates the effects of non-driving related tasks, take-over request time, and take-over mode interactions on take-over performance in human–machine cooperative driving in a highway environment. Based on the driving simulation platform, a human–machine collaborative driving simulation experiment was designed with various take-over quality influencing factors. The non-driving related tasks included no task, listening to the radio, watching videos, playing games, and listening to the radio and playing games; the take-over request time was set to 6, 5, 4, and 3 s, and the take-over methods include passive and active take-over. Take-over test data were collected from 65 drivers. The results showed that different take-over request times had significant effects on driver take-over performance and vehicle take-over steady state (p < 0.05). Driver reaction time and minimum TTC decreased with decreasing take-over request time, maximum synthetic acceleration increased with decreasing take-over request time, accident rate increased significantly at 3 s take-over request time, and take-over safety was basically ensured at 4 s request time. Different non-driving related tasks have a significant effect on driver take-over performance (p < 0.05). Compared with no task, non-driving related tasks significantly increase driver reaction time, but they only have a small effect on vehicle take-over steady state. Vehicle take-over mode has a significant effect on human–machine cooperative driving take-over quality; compared with passive take-over mode, the take-over quality under active take-over mode is significantly lower.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Talent Special Project

Guilin Key Research and Development Program

Innovation Project of GUET Graduate Education

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-Machine Co-Driving Mode Switching Method of Autonomous Vehicles based on Traffic Scenarios;2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3