Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow

Author:

Nogueira Wallisson C.1,Garcés Negrete Lina P.1ORCID,López-Lezama Jesús M.2ORCID

Affiliation:

1. Electrical, Mechanical and Computer Engineering School, Federal University of Goiás, Av. Universitária No. 1488, Goiânia 74605-010, Brazil

2. Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia

Abstract

Modern distribution systems and microgrids must deal with high levels of uncertainty in their planning and operation. These uncertainties are mainly due to variations in loads and distributed generation (DG) introduced by new technologies. This scenario brings new challenges to planners and system operators that need new tools to perform more assertive analyses of the grid state. This paper presents an optimization methodology capable of considering uncertainties in the optimal allocation and sizing problem of DG in distribution networks. The proposed methodology uses an interval power flow (IPF) that adds uncertainties to the combinatorial optimization problem in charge of sizing and allocating DG units in the network. Two metaheuristics were implemented for comparative purposes, namely, symbiotic organism search (SOS) and particle swarm optimization (PSO). The proposed methodology was implemented in Python® using as benchmark distribution systems the IEEE 33-bus and IEEE 69-bus test distribution networks. The objective function consists of minimizing technical losses and regulating network voltage levels. The results obtained from the proposed IPF on the tested networks are compatible with those obtained by the PPF, thus evidencing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS metaheuristic proved to be robust, since it was able to find the best solutions (lowest losses) while keeping voltage levels within the predetermined range. On the other hand, the PSO metaheuristic showed less satisfactory results, since for all test systems, the solutions found were of lower quality than the ones found by the SOS.

Funder

Colombia Scientific Program

Brazilian National Council for Scientific and Technological Development

CAPES-Brazil

INERGE

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3