Twitter Data Mining for the Diagnosis of Leaks in Drinking Water Distribution Networks

Author:

Jiménez-Cabas Javier1ORCID,Torres Lizeth2ORCID,Lozoya-Santos Jorge de J.3ORCID

Affiliation:

1. Departamento de Ciencias de la Computación y Electrónica, Universidad de la Costa, Barranquilla 080002, Colombia

2. Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico

3. Departamento de Mecatrónica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico

Abstract

This article presents a methodology for using data from social networks, specifically from Twitter, to diagnose leaks in drinking water distribution networks. The methodology involves the collection of tweets from citizens reporting leaks, the extraction of information from the tweets, and the processing of such information to run the diagnosis. To demonstrate the viability of this methodology, 358 Twitter leak reports were collected and analyzed in Mexico City from 1 May to 31 December 2022. From these reports, leak density and probability were calculated, which are metrics that can be used to develop forecasting algorithms, identify root causes, and program repairs. The calculated metrics were compared with those calculated through telephone reports provided by SACMEX, the entity that manages water in Mexico City. Results show that metrics obtained from Twitter and phone reports were highly comparable, indicating the usefulness and reliability of social media data for diagnosing leaks.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3