Multi-Layered Projected Entangled Pair States for Image Classification

Author:

Li Lei1,Lai Hong1

Affiliation:

1. School of Computer and Information Science, Southwest University, Chongqing 400715, China

Abstract

Tensor networks have been recognized as a powerful numerical tool; they are applied in various fields, including physics, computer science, and more. The idea of a tensor network originates from quantum physics as an efficient representation of quantum many-body states and their operations. Matrix product states (MPS) form one of the simplest tensor networks and have been applied to machine learning for image classification. However, MPS has certain limitations when processing two-dimensional images, meaning that it is preferable for an projected entangled pair states (PEPS) tensor network with a similar structure to the image to be introduced into machine learning. PEPS tensor networks are significantly superior to other tensor networks on the image classification task. Based on a PEPS tensor network, this paper constructs a multi-layered PEPS (MLPEPS) tensor network model for image classification. PEPS is used to extract features layer by layer from the image mapped to the Hilbert space, which fully utilizes the correlation between pixels while retaining the global structural information of the image. When performing classification tasks on the Fashion-MNIST dataset, MLPEPS achieves a classification accuracy of 90.44%, exceeding tensor network models such as the original PEPS. On the COVID-19 radiography dataset, MLPEPS has a test set accuracy of 91.63%, which is very close to the results of GoogLeNet. Under the same experimental conditions, the learning ability of MLPEPS is already close to that of existing neural networks while having fewer parameters. MLPEPS can be used to build different network models by modifying the structure, and as such it has great potential in machine learning.

Funder

National Natural Science Foundation of China

General Program of Chongqing Natural Science Foundation

Venture & Innovation Support Program for Chongqing Overseas Returnees

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QTN-MLP: Quantum Tensor Network-enhanced MLP for Medical Image Classification;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3