OTE-SLAM: An Object Tracking Enhanced Visual SLAM System for Dynamic Environments

Author:

Chang Yimeng1,Hu Jun1,Xu Shiyou1

Affiliation:

1. School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China

Abstract

With the rapid development of autonomous driving and robotics applications in recent years, visual Simultaneous Localization and Mapping (SLAM) has become a hot research topic. The majority of visual SLAM systems relies on the assumption of scene rigidity, which may not always hold true in real applications. In dynamic environments, SLAM systems, without accounting for dynamic objects, will easily fail to estimate the camera pose. Some existing methods attempt to address this issue by simply excluding the dynamic features lying in moving objects. But this may lead to a shortage of features for tracking. To tackle this problem, we propose OTE-SLAM, an object tracking enhanced visual SLAM system, which not only tracks the camera motion, but also tracks the movement of dynamic objects. Furthermore, we perform joint optimization of both the camera pose and object 3D position, enabling a mutual benefit between visual SLAM and object tracking. The results of experiences demonstrate that the proposed approach improves the accuracy of the SLAM system in challenging dynamic environments. The improvements include a maximum reduction in both absolute trajectory error and relative trajectory error by 22% and 33%, respectively.

Funder

National Key Research and Development Program of China

Shenzhen Fundamental Research Program

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DOT-SLAM: A Stereo Visual Simultaneous Localization and Mapping (SLAM) System with Dynamic Object Tracking Based on Graph Optimization;Sensors;2024-07-18

2. A Survey of Visual SLAM in Dynamic Environment: The Evolution From Geometric to Semantic Approaches;IEEE Transactions on Instrumentation and Measurement;2024

3. YOLO Instance Segmentation Model Comparison for Drone Detection as Visual Servo Control Marker;2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM);2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3