Comprehensive Gene Analysis of IgG4-Related Ophthalmic Disease Using RNA Sequencing

Author:

Asakage Masaki,Usui YoshihikoORCID,Nezu Naoya,Shimizu Hiroyuki,Tsubota KinyaORCID,Umazume Kazuhiko,Yamakawa NaoyukiORCID,Umezu TomohiroORCID,Suwanai HirotsuguORCID,Kuroda Masahiko,Goto Hiroshi

Abstract

High-throughput RNA sequencing (RNA-seq) uses massive parallel sequencing technology, allowing the unbiased analysis of genome-wide transcription levels and tumor mutation status. Immunoglobulin G4-related ophthalmic disease (IgG4-ROD) is a fibroinflammatory disease characterized by the enlargement of the ocular adnexal tissues. We analyzed RNA expression levels via RNA-seq in the biopsy specimens of three patients diagnosed with IgG4-ROD. Mucosa-associated lymphoid tissue (MALT) lymphoma, reactive lymphoid hyperplasia (RLH), normal lacrimal gland tissue, and adjacent adipose tissue were used as the controls (n = 3 each). RNA-seq was performed using the NextSeq 500 system, and genes with |fold change| ≥ 2 and p < 0.05 relative to the controls were defined as differentially expressed genes (DEGs) in IgG4-ROD. To validate the results of RNA-seq, real-time polymerase chain reaction (PCR) was performed in 30 IgG4-ROD and 30 orbital MALT lymphoma tissue samples. RNA-seq identified 35 up-regulated genes, including matrix metallopeptidase 12 (MMP12) and secreted phosphoprotein 1 (SPP1), in IgG4-ROD tissues when compared to all the controls. Many pathways related to the immune system were included when compared to all the controls. Expressions of MMP12 and SPP1 in IgG4-ROD tissues were confirmed by real-time PCR and immunohistochemistry. In conclusion, we identified novel DEGs, including those associated with extracellular matrix degradation, fibrosis, and inflammation, in IgG4-ROD biopsy specimens. These data provide new insights into molecular pathogenetic mechanisms and may contribute to the development of new biomarkers for diagnosis and molecular targeted drugs.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3