A General Deep Learning Point–Surface Fusion Framework for RGB Image Super-Resolution

Author:

Zhang Yan12,Zhang Lifu1ORCID,Song Ruoxi1ORCID,Tong Qingxi1

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, No. 20 Datun Road, Beijing 100101, China

2. University of Chinese Academy of Sciences, No. 3 Datun Road, Beijing 100101, China

Abstract

Hyperspectral images are usually acquired in a scanning-based way, which can cause inconvenience in some situations. In these cases, RGB image spectral super-resolution technology emerges as an alternative. However, current mainstream spectral super-resolution methods aim to generate continuous spectral information at a very narrow range, limited to the visible light range. Some researchers introduce hyperspectral images as auxiliary data. But it is usually required that the auxiliary hyperspectral images have the same spatial range as RGB images. To address this issue, a general point–surface data fusion method is designed to achieve the RGB image spectral super-resolution goal in this paper, named GRSS-Net. The proposed method utilizes hyperspectral point data as auxiliary data to provide spectral reference information. Thus, the spectral super-resolution can extend the spectral reconstruction range according to spectral data. The proposed method utilizes compressed sensing theory as a fundamental physical mechanism and then unfolds the traditional hyperspectral image reconstruction optimization problem into a deep network. Finally, a high-spatial-resolution hyperspectral image can be obtained. Thus, the proposed method combines the non-linear feature extraction ability of deep learning and the interpretability of traditional physical models simultaneously. A series of experiments demonstrates that the proposed method can effectively reconstruct spectral information in RGB images. Meanwhile, the proposed method provides a framework of spectral super-resolution for different applications.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3