Experimental Results of Underwater Sound Speed Profile Inversion by Few-Shot Multi-Task Learning

Author:

Huang Wei1ORCID,Zhou Jixuan2,Gao Fan3,Wang Junting3,Xu Tianhe3

Affiliation:

1. Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

2. Hanjiang Laboratory, Wuhan 430060, China

3. School of Space Science and Physics, Shandong University at Weihai, Weihai 264209, China

Abstract

Underwater Sound Speed Profile (SSP) distribution is crucial for the propagation mode of acoustic signals, so fast and accurate estimation of SSP is of great importance in building underwater observation systems. The state-of-the-art SSP inversion methods include frameworks of matched field processing (MFP), compressive sensing (CS), and feed-forward neural networks (FNNs), among which the FNN shows better real-time performance while maintaining the same level of accuracy. However, the training of FNN needs quite a lot historical SSP samples, which is difficult to satisfy in many ocean areas. This situation is called few-shot learning. To tackle this issue, we propose a multi-task learning (MTL) model with partial parameter sharing among different training tasks. By MTL, common features could be extracted, which accelerates the learning process on given tasks, and reduces the demand for reference samples, enhancing the generalization ability in few-shot learning. To verify the feasibility and effectiveness of MTL, a deep-ocean experiment was held in April 2023 in the South China Sea. Results show that MTL outperforms the other mainstream methods in terms of accuracy for SSP inversion, while inheriting the real-time advantage of FNN during the inversion stage.

Funder

Natural Science Foundation of Shandong Province

Laoshan Laboratory

China Postdoctoral Science Foundation

Qingdao Postdoctoral Science Foundation

National Natural Science Foundation of China

National Defense Science and Technology Innovation Special Zone Project: Marine Science and Technology Collaborative Innovation Center

Fundamental Research Funds for the Central Universities, Ocean University of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3