Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficient Total Variation

Author:

Xu Shuang123ORCID,Wang Jilong4,Wang Jialin5

Affiliation:

1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710021, China

2. Guangxi Key Laboratory of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China

3. Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China

4. School of Data Science and Engineering, Xi’an Innovation College of Yan’an University, Xi’an 710100, China

5. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Although thick cloud removal is a complex task, the past decades have witnessed the remarkable development of tensor-completion-based techniques. Nonetheless, they require substantial computational resources and may suffer from checkboard artifacts. This study presents a novel technique to address this challenging task using representation coefficient total variation (RCTV), which imposes a total variation regularizer on decomposed data. The proposed approach enhances cloud removal performance while effectively preserving the textures with high speed. The experimental results confirm the efficiency of our method in restoring image textures, demonstrating its superior performance compared to state-of-the-art techniques.

Funder

Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shaanxi Fundamental Science Research Project for Mathematics and Physics

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning;Zhang;ISPRS J. Photogramm. Remote Sens.,2020

2. Thick cloud removal in Landsat images based on autoregression of Landsat time-series data;Cao;Remote Sens. Environ.,2020

3. Hyperspectral Image Denoising by Asymmetric Noise Modeling;Xu;IEEE Trans. Geosci. Remote Sens.,2022

4. Haze and thin cloud removal via sphere model improved dark channel prior;Li;IEEE Geosci. Remote Sens. Lett.,2018

5. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images;Zhu;IEEE Geosci. Remote Sens. Lett.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3