A Bayesian Source Model for the 2022 Mw6.6 Luding Earthquake, Sichuan Province, China, Constrained by GPS and InSAR Observations

Author:

Xu Guangyu12,Xu Xiwei3,Yi Yaning1ORCID,Wen Yangmao4ORCID,Sun Longxiang4,Wang Qixin1,Lei Xiaoqiong1

Affiliation:

1. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

2. School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China

3. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

4. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

Abstract

Until the Mw 6.6 Luding earthquake ruptured the Moxi section of the Xianshuihe fault (XSHF) on 5 September 2022, the region had not experienced an Mw >6 earthquake since instrumental records began. We used Global Positioning System (GPS) and Sentinel-1 interferometric synthetic aperture radar (InSAR) observations to image the coseismic deformation and constrain the location and geometry of the seismogenic fault using a Bayesian method We then present a distributed slip model of the 2022 Mw6.6 Luding earthquake, a left-lateral strike-slip earthquake that occurred on the Moxi section of the Xianshuihe fault in the southwest Sichuan basin, China. Two tracks (T26 and T135) of the InSAR data captured a part of the coseismic surface deformation with the line-of-sight displacements range from ∼−0.16 m to ~0.14 m in the ascending track and from ~−0.12 m to ~0.10 m in the descending track. The inverted best-fitting fault model shows a pure sinistral strike-slip motion on a west-dipping fault plane with a strike of 164.3°. We adopt a variational Bayesian approach and account for the uncertainties in the fault geometry to retrieve the distributed slip model. The inverted result shows that the maximum slip of ~1.82 m occurred at a depth of 5.3 km, with the major slip concentrated within depths ranging from 0.9–11 km. The InSAR-determined moment is 1.3 × 1019 Nm, with a shear modulus of 30 GPa, equivalent to Mw 6.7. The published coseismic slip models of the 2022 Luding earthquake show apparent differences despite the use of similar geodetic or seismic observations. These variations underscore the uncertainty associated with routinely performed source inversions and their interpretations for the underlying fault model.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3