Hyperspectral Image Classification Using Spectral–Spatial Double-Branch Attention Mechanism

Author:

Kang Jianfang12ORCID,Zhang Yaonan12ORCID,Liu Xinchao3,Cheng Zhongxin3

Affiliation:

1. National Cryosphere Desert Data Center, Lanzhou 730000, China

2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

Abstract

In recent years, deep learning methods utilizing convolutional neural networks have been extensively employed in hyperspectral image classification (HSI) applications. Nevertheless, while a substantial number of stacked 3D convolutions can indeed achieve high classification accuracy, they also introduce a significant number of parameters to the model, resulting in inefficiency. Furthermore, such intricate models often exhibit limited classification accuracy when confronted with restricted sample data, i.e., small sample problems. Therefore, we propose a spectral–spatial double-branch network (SSDBN) with an attention mechanism for HSI classification. The SSDBN is designed with two independent branches to extract spectral and spatial features, respectively, incorporating multi-scale 2D convolution modules, long short-term memory (LSTM), and an attention mechanism. The flexible use of 2D convolution, instead of 3D convolution, significantly reduces the model’s parameter count, while the effective spectral–spatial double-branch feature extraction method allows SSDBN to perform exceptionally well in handling small sample problems. When tested on 5%, 0.5%, and 5% of the Indian Pines, Pavia University, and Kennedy Space Center datasets, SSDBN achieved classification accuracies of 97.56%, 96.85%, and 98.68%, respectively. Additionally, we conducted a comparison of training and testing times, with results demonstrating the remarkable efficiency of SSDBN.

Funder

National Key R&D Program of China

National Cryosphere Desert Data Center

Research and Development in Artificial Intelligence Data Fusion

Demonstration of Digital Empowerment Applications

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3